

Des patrons pour la certification d'IA embarquable

Journée IE + INFORSID

29/03/2024

Bernard BOTELLA ⁽¹⁾ Florent CHENEVIER ⁽²⁾, Stephen CREFF ⁽³⁾, Jean-Loup FARGES ⁽⁴⁾, Anthony FERNANDES PIRES ⁽⁴⁾ Ramon CONEJO LAGUNA ⁽⁵⁾ **Eric JENN** ⁽⁵⁾ Florent LATOMBE ⁽⁶⁾, Yassir ID MESSAOUD ⁽³⁾, Vincent MUSSOT⁽⁵⁾

⁽¹⁾ CEA, ⁽²⁾ Thales AVS, ⁽³⁾ IRT SystemX, ⁽⁴⁾ ONERA, ⁽⁵⁾ IRT Saint Exupéry, ⁽⁶⁾ Obeo

p a g e

2

□ Context and Objectives

- □ The process: Assurance cases and the ML development workflow
- □ Uncertainty assessment
- Conclusion

Contex and Objectives

р

a g e

Context *The Confiance.ai Programme (www.confiance.ai)*

р а

Context *The Confiance.ai Programme (www.confiance.ai)*

□ Program structure : 7 Engineering Challenges, 2021 => 2024

EC	Adressed Topic
EC#1	Integration & Use-Cases, (+ Trusted AI Devops environment)
EC#2	Process, methodology & Guidelines
EC#3	Characterization & Qualification of Trustworthy AI
EC#4	Design for Trustworthy AI @ Algo, Components & System levels
EC#5	Data, Information & knowledge engineering for trusted Al
EC#6	IVV&Q strategy toward homologation/certification
EC#7	Target Embedded Al

"Look at the book Chap. 3, Sec. 14, Vs 16"

"Trussssssssst me... Trussssssssst me..."

р а

> g e

р а

> g e

р а

g e

Assurance Cases Main concepts

р а

> g e

9

29/03/2024

The process

From Engineering Items to Assurance Cases

p g e

0

From Engineering Items to Assurance Cases *Robustness argumentation template*

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

р

а

g e

From Engineering Items to Assurance Cases

Robustness argumentation template

 $\ensuremath{\mathbb{C}}$ IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

fil

р

а

g e

From Engineering Items to Assurance Cases

Robustness argumentation template

р

а

g e

6

FRENCH

INSTITUTES OF TECHNOLOGY

Specif

From Engineering Items to Assurance Cases *Refinement of requirements*

- 1. Partitioning by robustness criteria
 - Percentage of samples that are robust
 - Maximal lambda for which all samples are robust
- All choices Mean of maximal lambda for which each sample is robust

ł	Partitioning by robustness criteria	Partitioning by robustness criteria	
	Local Robustness Norm Selection Strategy pattern Process-based Vs. Product-based Design Method	 Percentage of samples that are robust Maximal lambda for which all samples are robust Mean of maximal lambda for which each sample is robust 	choice
	configuration	Capella Pure::variant configuration wizard	

мепи

0

From Engineering Items to Assurance Cases

□ Strategy pattern Process-based (By Design) Vs. Product-based (By verification)

2

□ Strategy pattern Process-based (By Design) Vs. Product-based (By verification)

2

Robustness AC Template

□ Strategy pattern Process-based (By Design) Vs. Product-based (By verification)

Robustness AC Template

□ Families of method (from Confiance SotA: "EC4-Trustworthiness by design"):

 <Jacobian regularization>, <Lipschitz training>, <Certified robust training>, <Randomised smoothing>, <Random noising>

Uncertainty Assessment & Choice of Strategies

Using Dempster-Shafer theory...

р

Choose the most convincing strategy

- □ Focus the validation effort on the most sensitive parts of the argumentation
 - Assessment performed at each goal provides
 - Goal weakness
 - Contradiction between proof elements
 - For conjunctions
 - Procedure to improve the AC
- □ Identify the weaknesses of AC structure
 - Not sufficiently convincing strategies associated to a goal whose

p a g e

Uncertainty in the context of AC

□ How to establish confidence ?

 Use of assurance case to justify the well-founded development of systems integrating machine learning

□ What is an assurance case?

A structured argument used to justify a desired claim (safe, reliable, robust ...), based on evidence(s) concerning both the system and the environment in which it operates.

Issue

- What are the sources of uncertainty in a structured argument?
- How to measure and propagate uncertainty in these structures?

Uncertainty is a general description of a state of knowledge that makes it difficult/impossible to assess the truth or the falsity of a piece of information (or a proposition).

What does confidence mean in our framework ?

□ The concept of "Confidence", in our context (i.e., argumentation), reflects the amount of information an expert has that can justify his/her judgment about a proposition.

A justification can be for or against a proposition. Formally, it's defined as:

Conf(A) = Bel(A) + Disb(A).

□ Complete information consists of what is known, and what is unknown (uncertainty/ignorance) about a proposition A, such as:

Conf(A) + Uncer(A) = 1.

Sources of uncertainty in AC

□ Two factor to estimate uncertainty

- Trustworthiness which quantifies the truth (with belief measures) and the falsity (with disbelief measures) in propositions (i.e., goals).
- Appropriateness which quantifies the truth about the inference (i.e., supported by relation) between a parent goal and its child goal(s). This is related to the strategy deployed by the AC designer to develop his/her reasoning.

- $trust_i \equiv (Bel_i, Disb_i, Uncer_i), i = \{GOA1, GOA2, GOA3\}$
- $appr \equiv (Bel_{(GOA2,GOA3) \rightarrow GOA1}, Uncer_{(GOA2,GOA3) \rightarrow GOA1})$

INSTITUTES OF

□ Aleatoric uncertainty (or Randomness) due to the variability of natural phenomena. E.g., rolling a dice.

□ Epistemic uncertainty (or Incompleteness) due to lack of information. E.g., "The crime suspect fled in a grey car". This information is not that sufficient to track down the suspect. What kind of car was it? In which direction did he/she flee?

□ Inconsistency due to misinformation and contradiction. E.g., proand anti-vaccine arguments in a global pandemic situation.

□ Fuzziness or vagueness due to imprecise information. E.g., Pierre is tall. The borderline between "tall" and "not tall" is not well-defined.

□ Probability theory deals well with random events (frequencies), but less well with singular events due to a lack of information.

□It represents uncertainty by assuming even distribution over the whole frame of discernment Ω, such that: $P(\{\omega_i\}) = \frac{1}{|\Omega|}$.

• Example: Case of a light bulb, $\Omega = \{On, Off\}$

• I have no idea of the state of the light bulb: $P({On}) = P({Off}) = \frac{1}{2}$

• There's an equal chance of the light bulb being on or off: $P(\{On\}) = P(\{Off\}) = \frac{1}{2}$

Both situations are described using the same model

Dempster-Shafer theory (DST) is a generalization of probability theory that deal well with both epistemic and aleatory uncertainties.

□ It defines the concepts of: Mass function (BPA) $m: 2^{\Omega} \rightarrow [0,1]$ such that: $\sum_{E \subseteq \Omega} m(E) = 1.$

Example: Case of a light bulb, $Ω = {On, Off}$

m({*0n*}): Quantifies the probability that the light bulb is "**On**".
 m({*0ff*}): Quantifies the probability that the light bulb is "**Off**".

• $m(\Omega)$: Quantifies ignorance on the state of the light bulb "On" or "Off".

■ *m*(Ø): Quantifies contradiction. I.e., "On" and "Off" at the same time.

ħ

Measuring uncertainty – Dempster-Shafer Theory

Dempster-Shafer

□ From a mass function, we define the concepts of:

Belief function:

 $Bel(A) = \sum_{E \subseteq A, E \neq \emptyset} m(E)$ and $Disb(A) = Bel(\overline{A})$

Uncertainty Evaluation – Mathematical Background

Confidence & Uncertainty in DST/AC framework

р

а

Uncertainty metrics *Visualization format*

□ Uncertainty metrics are displayed in terms of belief and disbelief degrees.

Metric (GOA01)	Numerical value	Qualitative value
Belief degree	0.95	Very high
Disbelief degree	0.00	Very low
Conflict degree	0.00	Very low

Nota. Belief (resp. disbelief) degree, noted $Bel(\{A\})$ (resp. $Disb(\{A\}) = Bel(\{\neg A\})$ represents the sum of all evidence in favour of (resp. against) an assertion (*A*). While uncertainty degree is noted $Uncer(\{A\}) = 1 - Bel(\{A\}) - Disb(\{A\})$. The strength of an evidence for or against *A* is called a mass and is resp. noted $m(\{A\})$ to quantify the probability that A is True or $m(\{\neg A\})$ when A is False, while $m(\{A, \neg A\})$ quantifies ignorance.

Uncertainty Evaluation – Mathematical Background

Elicitation

- Decision, Dec(A): given by an expert to accept or reject a proposition (A)
 - Dec(A)=[1+Bel(A)-Disb(A)]/2
- Confidence, Conf(A): the amount of information the expert needs to justify his/her decision
 - Conf(A)=Bel(A)+Disb(A)

□ A constraint is added to ensure that strong decisions are not taken in cases of significant uncertainty:

■ [1-Conf(A)]/2≤Dec(A)≤[1+Conf(A)]/2

Uncertainty metrics Entry format

□ Uncertainty metrics are pre-entered by the developer

		Strate	gy STR:		GOA10
Q1. Assuming GOA2 assessment of the conc	0 is valid, w lusion GOA10?	hat is your			
			Numerical value	Qualitative value	STR
Confidence	<	>	0.75	Very high	
Decision Q2. Assuming GOA20	<pre> is invalid, v </pre>	vhat is your	1.00	Strong acceptance	♦ <i>GOA</i> 20
assessment of the concl	usion GOA10?		Numerical value	Qualitative value	
Confidence	<	>	1.00	Very high	
Decision	<	>	1.00	Strong rejection	SOL10

Confidence metrics propagation

□ Method selection on the basis of propagation results:

Methods	Propagation results on the top-goal	
Methous	Belief degree	Disbelief degree
Lipschitz Training	0,92	0,01
Randomised Smoothing	0,78	0,02
Certified Robust Training	0,89	0,01

29/03/2024

Tool support

р

a g e

Assurance case viewpoint in Capella Environment

p a g e 4

Assurance case viewpoint in Capella Environment

Content assist

Property <=> Exchange item

4 EventExchangeitem		OperationExchangeItem	∑ FlowExchangelten	
	Palette		pProperty 2	
Share		• * *	V	
-	Ca Classes			
	Common			
	Communi	ication		
	😕 Engineerir	ngProperty	40	
	E Add			
	Associa	te to Exchangeltem		
	Associa	te to Exchangeltem from Data Pkg		
	🔌 Enginee	🔌 Engineering Properties		
	ß			
	Inse Pro	ert/Remove Engineering perties		

Assurance Cases

Assurance case viewpoint in Capella Tactics

29/03/2024

р а

g e

4

Assurance case viewpoint in Capella V&V Plan

р а

> g e

4 4

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

INSTITUTES OF TECHNOLOGY

ħΊ

Conclusion

Where are we now? What next?

Status and next steps...

□ Status

- A (small) set of Assurance Cases on "important" properties for the development of systems embedding ML components (robustness, explicability, ODD correctness and completeness,...)
- A Model-based approach integrating and linking workflow and assurance case models
- A Capella **GSN viewpoint** with extensions supporting the approach

□ Next steps

- Improve integration within the "Confiance.ai" workbench
 - Links with the set of solutions proposed by the project
 - Links with the "Body of Knowledge" created by the project
- Extension of Assurance Cases to other properties
- Addition of new features
 - Impact analysis
 - Dependencies between strategies

THANKS FOR YOUR ATTENTION

29/03/2024

р

a g e

4

